Comparative study of layered and volumetric rescanning for different scanning speeds of proton beam in liver patients.

نویسندگان

  • K Bernatowicz
  • A J Lomax
  • A Knopf
چکیده

In recent years, particle therapy has become a widely accepted form of cancer treatment and technological advances in beam delivery technology (i.e. pencil beam scanning (PBS)) have enabled the application of highly conformal dose distributions to static targets. Current research focuses on the possibilities for the treatment of mobile targets with these techniques. Of different motion mitigation methods being investigated, rescanning is perhaps the easiest to apply clinically. In general however, different PBS delivery systems exhibit a different temporal parameter space between delivery and target motions, due to the system specific beam position adjustment times (BPATs). Depending on these BPATs, dosimetric effects appearing during irradiation of moving targets vary significantly. In this work, volumetric and layered rescanning were compared for four different scenarios--a combination of fast and slow BPATs laterally (4 ms and 10 ms) and in depth (80 ms and 1 s); and nine different treatment plan arrangements for two clinical liver cases. 4D dose calculations were performed assuming regular, sinusoidal rigid motion as a worst-case motion scenario to model interplay effects. Calculations were sampled over three different starting phases resulting in a total of 432 dose distributions. It was found that layered rescanning is the method of choice for slow scanning systems, both in terms of dose homogeneity (D5-95 values are lower by up to 16% with layered rescanning) and in the estimated treatment delivery times (reduction of up to 300 s with layered rescanning). Analysis of dose homogeneity showed that layered rescanning leads to a smoother decrease in dose inhomogeneity as a function of the number of rescans than volumetric rescanning, which shows larger fluctuations. However, layered rescanning appears to be more sensitive to the starting phase. When analyzing the performance of both approaches and different scanning speeds as a function of delivery time, layered rescanning appears to be the only viable approach for slow energy changing systems, even approaching the performance of fast energy changing systems, as long as lateral scanning speeds are kept high. Similar results were found for multiple field plans and when analyzing different field directions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4D treatment (planning) workshop

no 1: Technical challenges of fast volumetric rescanning O. Actis, D. Meer, A. Mayor, G. Klimpki, S. Psoroulas, D.C. Weber For pencil beam scanning the most studied method to mitigate the dose delivery uncertainties due to the organ motion is rescanning. Achieving an optimal treatment for a moving target by volumetric rescanning, where the whole tumour volume is scanned multiple times, requires...

متن کامل

Investigation of tumor motion influence on applied dose distribution in conventional proton therapy vs. IMPT a 4D Monte Carlo simulation study

Background: in radiation treatment of moving targets located in thorax region of patient body, the delivered dose does not match with the planned treatment, resulting in some over and under dosage in the tumor volume, as a function of motion magnitude and frequency. Several efforts have been done to investigate the target motion effects on dose distribution in the target and surrounding normal ...

متن کامل

Calculation of Neutron Dose Ratio of Heart, Lung and Liver due to breast cancer Proton Therapy using MCNPX code

Introduction: The proton beam produced in particle accelerators has an appropriate therapeutic potential. In this research, proton therapy of breast cancer is simulated using the MCNPX code in a MIRD phantom, also the contribution of scattered neutron dose during the proton therapy were calculated for the Heart, Lung and Liver.   Materials and Methods: For si...

متن کامل

Comparison study between layered and functionally graded composite beams for static deflection and stress analyses

The aim of this paper is to compare the static deflections and stress results of layered and functionally graded composite beams under static load. In the comparison study, the results obtained for a cantilever beam under point load. The Timoshenko beam and the Euler-Bernoulli beam theories are used in the beam model. The energy based Ritz method is used for the solution of the problem and alge...

متن کامل

Effects of Defining Realistic Compositions of the Ocular Melanoma on Proton Therapy

Background: Recent studies in eye plaque brachytherapy have shown a considerable difference between the dosimetric results using water phantom and a model of human eye containing realistic materials. In spite of this fact, there is a lack of simulation studies based on such a model in proton therapy literatures. In the presented work, the effect of utilizing an eye model with ocular media on pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 58 22  شماره 

صفحات  -

تاریخ انتشار 2013